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What Is Reinforcement Learning?

• Learn optimal policy
by interacting with 
the environment

• Interaction produces
a sequence of 
(state, action, 
new state, reward)
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Why Reinforcement Learning?

• Sequential input and action

• Long dependency of reward and 
the past action
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Markov Decision Processes

• An MDP is defined by:
• A set of states s ∈ S
• A set of actions a ∈ A
• A transition function T(s, a, s’)

• Probability that a from s leads to s’, i.e., P(s’| s, a)
• Also called the model or the dynamics

• A reward function R(s, a, s’) 
• Sometimes just R(s) or R(s’)

• A start state
• Maybe a terminal state

• Goal: Maximize sum of rewards
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What is Markov about MDPs?

• “Markov” generally means that given the present state, the future 
and the past are independent

• For Markov decision processes, “Markov” means action outcomes 
depend only on the current state

• This is just like search, where the successor function could only 
depend on the current state (not the history)

Andrey Markov 
(1856-1922)
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Policies

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

• In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

• For MDPs, we want an optimal policy π*: S → A
• A policy π gives an action for each state
• An optimal policy is one that maximizes        expected 

utility if followed
• An explicit policy defines a reflex agent
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Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Source: 
http://ai.berkeley.edu/l
ecture_videos.html

http://ai.berkeley.edu/lecture_videos.html
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Example: Running
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Example: Running
• A robot wants to runs far and quickly
• Three states: Cool, Warm, Overheated

• Two actions: Slow, Fast
• Going faster gets double reward
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Utilities of Sequences
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Utilities of Sequences

• What preferences should an agent have over reward sequences?

• More or less?

• Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or
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Discounting

• It’s reasonable to maximize the sum of rewards
• It’s also reasonable to prefer rewards now to rewards later
• One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Utilities

• Episodic task:

• Continuous task:

• Discounting: use 0 < γ < 1
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Recap: Defining MDPs

• Markov decision processes:
• Set of states S
• Start state s0
• Set of actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount γ)

• MDP quantities so far:
• Policy = Choice of action for each state
• Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’
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Solving MDPs
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Optimal Quantities

 The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

 The optimal policy:
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



9/17/2018 Deep RL for Medical Imaging 179/17/2018 17

Optimal Value Function

 The value (utility) of a state s:
V*(s) = expected utility starting in s and acting optimally

 So far, only consider deterministic state transition. Change to probabilistic 
transition: same action can lead to different states



Optimal q-state function

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out having taken action a from state s and 

(thereafter) acting optimally

 Deterministic state transition

 Probabilistic state transition
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Relationship between value and q-state functions

• Recursive definition of value:

a

s

s, a

s,a,s’
s’
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Value Iteration

• Start with V0(s) = 0: no time steps left means an expected reward sum of zero

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Repeat until convergence

• Complexity of each iteration: O(S2A)

• Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’
Vk(s’)
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Example: Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!
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Computing Actions from Values

• Let’s imagine we have the optimal values V*(s)

• How should we act?
• It’s not obvious!

• We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the values

Source: http://ai.berkeley.edu/lecture_videos.html
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Computing Actions from Q-Values

• Let’s imagine we have the optimal q-values:

• How should we act?
• Completely trivial to decide!

• Important lesson: actions are easier to select from q-values than values!

Source: http://ai.berkeley.edu/lecture_videos.html
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Problems with Value Iteration

• Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – O(S2A) per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’
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Policy Evaluation

• Basic operation: compute the utility of a state s under a fixed 
(generally non-optimal) policy

• Define the utility of a state s, under a fixed policy π:
Vπ(s) = expected total discounted rewards starting in s and following π

• Recursive relation (one-step look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’
s’
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Policy Evaluation

• How do we calculate the V’s for a fixed policy π?

• Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

• Efficiency: O(S2) per iteration

• Idea 2: Without the maxes, the Bellman equations are just a linear system
• Solve with Matlab (or your favorite linear system solver)

π(s)

s

s, π(s)

s, π(s),s’
s’



9/17/2018 Deep RL for Medical Imaging 27

Policy Iteration

• Evaluation: For fixed current policy π, find values with policy evaluation:
• Iterate until values converge:

• Improvement: For fixed values, get a better policy using policy extraction
• One-step look-ahead:
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Comparison

• Both value iteration and policy iteration compute the same thing (all optimal values)

• In value iteration:
• Every iteration updates both the values and (implicitly) the policy
• We don’t track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast because we 

consider only one action, not all of them)
• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
• The new policy will be better (or we’re done)

• Both are dynamic programs for solving MDPs
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Reinforcement Learning

• Basic idea:
• Receive feedback in the form of rewards
• Agent’s utility is defined by the reward function
• Must (learn to) act so as to maximize expected rewards
• All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r
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Reinforcement Learning

• Still assume a Markov decision process (MDP):
• A set of states s ∈ S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy π(s)

• New twist: don’t know T or R
• I.e. we don’t know which states are good or what the actions do
• Must actually try actions and states out to learn
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Model-Based Learning

• Model-Based Idea:
• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience (s, a, s’)

• Step 2: Solve the learned MDP
• For example, use value iteration, as before
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Example: Model-Based Learning

Input Policy π

Assume: γ = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…Source: 
http://ai.berkeley.edu/
lecture_videos.html



Model Free Learning
• Model-Free Idea:

• No need to learn state transition probability                       and reward function
• Figure out value functions directly from interaction with environment

• Basic Approach
• Temporal difference learning
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Why Not Use Policy Evaluation?

• Simplified Bellman updates calculate V for a fixed policy:
• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

• Key question: how can we do this update to V without knowing T and R?
• In other words, how to we take a weighted average without knowing the weights?

π(s)

s

s, π(s)

s, π(s),s’
s’



9/17/2018 Deep RL for Medical Imaging 36

Model-Free Learning
Goal: Compute expected age of MICCAI attendees

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.
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Sample-Based Policy Evaluation

• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’ (by doing the action!) and average

But we can’t rewind time to get 
sample after sample from state s.
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Temporal Difference Learning



9/17/2018 Deep RL for Medical Imaging 39

Temporal Difference Learning

• Big idea: learn from every experience!
• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

π(s)
s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:
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Exponential Moving Average

• Exponential moving average 
• The running interpolation update:

• Makes recent samples more important

• Forgets about the past (distant past values were wrong anyway)

• Decreasing learning rate (alpha) can give converging averages
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Example: Temporal Difference Learning

Assume: γ = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States
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Problems with TD Value Learning

• TD value leaning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages

• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values
• Makes action selection model-free too!

a

s

s, a

s,a,s’
s’
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Active Reinforcement Learning

• Full reinforcement learning: optimal policies (like value iteration)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

• In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning!  You actually take actions in the world and find 

out what happens…
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Detour: Q-Value Iteration

• Value iteration: find successive (depth-limited) values
• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 q-values for all q-states:



Q-Learning

• Q-Learning: sample-based Q-value iteration

• Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)
• Consider your old estimate:
• Consider your new sample estimate:

• Incorporate the new estimate into a running average:
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Source: http://ai.berkeley.edu/lecture_videos.html



Demo of Q table
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Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)
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The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π* Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π* VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Goal Technique

Compute V*, Q*, π* Q-learning

Evaluate a fixed policy π Value Learning
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Approximating Values through Samples

• Policy Evaluation:

• Value Iteration:

• Q-Value Iteration:
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Exploration vs. Exploitation
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How to Explore?

• Several schemes for forcing exploration
• Simplest: random actions (ε-greedy)

• Every time step, flip a coin
• With (small) probability ε, act randomly
• With (large) probability 1-ε, act on current policy

• Problems with random actions?
• You do eventually explore the space, but keep thrashing around 

once learning is done
• One solution: lower ε over time
• Another solution: exploration functions



THANK YOU
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